Канд. техн. наук В. В. Песчанская, И. А. Алексеенко, А. С. Макарова, канд. техн. наук И. В. Голуб (Национальная металлургическая академия Украины, г. Днепропетровск, Украина)

Реакционная активность матричного компонента низкоцементного огнеупорного бетона

Введение

Существенные преимущества низкоцементных огнеупорных бетонов обусловили расширение областей их применения в тепловых агрегатах различного назначения и определили перспективу дальнейшего развития технологии их изготовления [1—3]. Состав низкоцементных бетонов представлен огнеупорным заполнителем и матрицей, которая состоит из гидравлического вяжущего, активных минеральных добавок и тонкодисперсных фракций заполнителя. Матрица бетонов оказывает первостепенное влияние на реологические свойства бетонов, их удобоукладываемость, скорость схватывания, прочностные и эксплуатационные свойства бетонов [1].

Традиционный способ приготовления бетонных смесей предусматривает смешивание заполнителя различной зернистости с тонкодисперсными компонентами матрицы. Учитывая определяющее влияние матрицы на технологические свойства бетонных масс и комплекс взаимосвязанных физико-механических свойств бетона, представляет интерес изучение возможности регулирования структуры и свойств огнеупорных бетонов с использованием механохимической активации матрицы.

В настоящее время использование механоактивации заполнителей и вяжущих способствовало развитию и использованию передовых технологий изготовления строительных материалов с эффективной структурой и физико-механическими свойствами цементных композиций. Механоактивация и тонкое измельчение строительных материалов способствует снижению пористости цементного камня в бетоне, ускорению начальной стадии твердения и упрочнению контактной зоны между цементным камнем и заполнителем [4—8].

Таким образом, механическая активация компонентов матрицы может рассматриваться как фактор направленного регулирования реотехнологических и физико-механических свойств низкоцементных огнеупорных бетонов.

Целью данной работы явилось исследование влияния изменения реакционной способности матрицы, содержащей цемент и тонкодисперсный заполнитель различной минералогической природы, на реологические свойства бетона и его предел прочности при сжатии на ранних стадиях твердения.

Экспериментальная часть

При проведении исследований компоненты матрицы (тонкодисперсный заполнитель и цемент) вводили без предварительного совместного измельчения и с использованием предварительно приготовленной матрицы посредством совместного измельчения заполнителя и цемента. Исследования влияния длительности помола компонентов матрицы низкоцементных бетонов на реологические свойства масс и предел прочности при сжатии бетонов на ранних стадиях твердения проводили с использованием заполнителей различной минералогической природы фракции 6-0.088 мм и менее 0.088 мм: спеченного периклаза (96.5% MgO), плавленого электрокорунда $(94.4\% \text{ Al}_2\text{O}_3)$, алюмоси-

ликатного шамота $(36,0\% \text{ Al}_2O_3)$; гидравлического вяжущего — высокоглиноземистого цемента Gorkal-70, пластифицирующих и дефлокулирующих добавок. Исследуемые составы бетонных масс (таблица) характеризовались одинаковым содержанием высокоглиноземистого цемента — 5%.

Приготовление механически

Таблица Вещественный состав бетонных масс

Материал	Номер состава		
	1	2	3
Заполнитель:			
периклаз	+		
электрокорунд		+	
шамот			+
Матрица:			
периклаз	+		
электрокорунд		+	
шамот			+
цемент Gorkal-70	+	+	+
Пластифицирующие и дефлокулирующие добавки	+	+	+

активированной матрицы осуществлялось в лабораторной вибрационной мельнице при соотношении массы минеральных компонентов к массе мелющих тел 1:10 и времени помола (τ) 5 и 10 мин. Приготовление бетонных масс из смесей, содержащих тонкодисперсный заполнитель и цемент, а также механоактивированную матрицу проводили в лабораторной мешалке, при этом влажность масс различных составов была постоянной независимо от времени помола матрицы.

Определение индекса растекания (ИР) бетонных масс проводили в соответствии с ГОСТ Р 52541—2006 «Бетоны огнеупорные. Подготовка образцов для испытаний». Образцы бетона (кубы с ребром 50 мм) изготавливали методом виброформования в разборные металлические формы при частоте 50 Гц. Предел прочности при сжатии образцов (σ) определяли через 1, 3 и 7 суток твердения на воздухе согласно ГОСТ 4071.1—94.

Результаты и их обсуждение

Результаты определения индекса растекания бетонных масс (рис. 1) свидетельствуют о существенном влиянии минералоги-

ческого состава заполнителя и длительности совместного измельчения заполнителя и цемента на реакционную активность матричного компонента.

Наиболее реакционным заполнителем является периклаз, и использование совместного помола периклаза и цемента сопровождается резким ухудшением реологических свойств бетонной массы: индекс растекания снижается на 22 и 48%. В случае использования электрокорунда совместный помол с цементом в течение

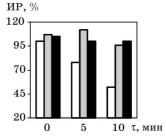


Рис. 1. Влияние длительности помола матрицы (τ) на растекание бетонной массы:

coctab:
$$\mathbb{N}_2$$
 1 — \mathbb{Z}_3 ; \mathbb{N}_2 2 — \mathbb{Z}_3 ;

 $5\,$ мин способствует улучшению тиксотропных свойств бетона и увеличению индекса растекания на $5\,\%$. Более длительный помол (10 мин) сопровождается снижением ИР на 11 % .

Независимо от длительности совместного измельчения шамота и цемента индекс растекания алюмосиликатного бетона не изменяется, однако раздельное введение тонкодисперсного заполнителя и цемента обеспечивает лучшие реологические свойства бетона.

Существенное влияние режима активации матричного компонента проявляется в процессах развития ранней структуры бетонов и их ускоренного твердения, при этом длительность совместного помола заполнителя и вяжущего является определяющим фактором. Сравнительный анализ изменения предела прочности при сжатии бетонных образцов, изготовленных при раздельном введении матричных компонентов и с использованием активированной матрицы, показал, что совместное измельчение тонкодисперсного заполнителя и цемента способствует повышению предела прочности при сжатии бетона через 1, 3 и 7 суток твердения на 2,2—6,7, 1,7—5,4 и 1,2—7,5 Н/мм² соответственно (рис. 2).

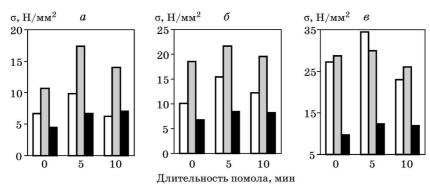


 Рис. 2. Влияние длительности помола матрицы и срока твердения бетона на изменение предела прочности при сжатии:

a-1 сутки; b-3 суток; b-7 суток; состав: № $1-\square$; № $2-\square$; № $3-\square$

Увеличение длительности помола матрицы с 5 до 10 мин негативно сказывается на прочностных свойствах корундового и периклазового бетонов, снижая прочность образцов в возрасте 1, 3 и 7 суток на 2,1-3,6 и 3,9-11,8 Н/мм²; при этом прочность шамотного бетона практически не изменяется. Максимальные значения прочности бетонов на различных заполнителях в возрасте 7 суток (12,3-34,8 Н/мм²) достигаются при использовании матричного компонента, активированного в течение 5 мин.

Сопоставительный анализ результатов определения ИР бетонов (рис. 1) и механической прочности образцов (рис. 2) свидетельствует о достаточно хорошей корреляции этих показателей, характеризующих степень реакционной способности матричного компонента. Следует также отметить, что активация матрицы предопределяет необходимость повышения количества пласти-

фицирующих и дефлокулирующих добавок для снижения водопотребности бетонных масс и сохранения тиксотропных свойств бетона.

Заключение

Результаты проведенных исследований по установлению влияния реакционной способности матрицы низкоцементных бетонов на заполнителях различной минералогической природы показали, что реологические свойства бетона и кинетика набора прочности в ранние периоды твердения существенно зависят от вида и времени предварительной активации матрицы. Реакционная способность матрицы в зависимости от вида заполнителя возрастает в ряду: алюмосиликатный шамот \rightarrow электрокорунд \rightarrow спеченный периклаз.

Библиографический список

- 1. Доррис Ван Гарсел Низкоцементные огнеупорные бетоны: материал и опыт применения / Доррис Ван Гарсел, Л. М. Аксельрод // Металлургическая и горнорудная пром-сть. 2001. № 1. C. 67—72.
- 2. Π ивинский O. E. Неформованные огнеупоры : справоч. изд. в 2 т. Т. 1 : Общие вопросы технологии. М. : Теплоенергетик, 2005. 448 с.
- 3. Семченко Г. Д. Неформованные огнеупоры : учеб. пособие. X. : НТУ «ХПИ», 2007. 304 с.
- 4. Болдырев В. В. Механохимия и механическая активация твердых веществ / В. В. Болдырев // Успехи химии. 2006. № 75. С. 203—216.
- 5. Косенко Н. Ф. Влияние механохимической активации на свойства зольно-известковых материалов / Н. Ф. Косенко, М. А. Смирнова // Вісник Нац. техн. ун-ту «ХПІ». Х. : НТУ «ХПІ», 2010. № 65. С. 39—43.
- 6. Прокопец В. С. Влияние механоактивационного воздействия на активность вяжущих веществ / В. С. Прокопец // Строительные материалы. 2003. № 9. С. 28—29.
- 7. Аввакумов Е. Γ . Механические методы активации химических процессов / Е. Γ . Авакумов. Новосибирск : Наука, 1986. 305 с.
- 8. *Коваленко* В. В. Синергетичний ефект зростання міцності бетону внаслідок механоактивації цементу й заповнювача / В. В. Коваленко, Л. Ж. Горобець // Вісник Нац. техн. ун-ту «ХПІ». Х. : НТУ «ХПІ», 2008. № 38. С. 113—118.

Рецензент к. т. н. Хончик И. В.