УДК 621.039.73

Д-р техн. наук С. Ю. Саенко, канд. техн. наук Е.А. Светличный, К.В. Лобач, А. Е. Сурков (ННЦ «Харьковский физико-технический институт», г. Харьков, Украина)

Установление оптимальных параметров процесса электроконсолидации для получения керамик HfB₂ и ZrB₂

Введение

В современном мире атомная энергетика играет очень важную роль. Весьма актуальным является решение проблемы безопасного обращения с радиоактивными отходами (PAO), которые образуются в результате эксплуатации атомных электростанций. В ННЦ ХФТИ систематически проводятся исследования по созданию радиационностойких керамических и стеклокерамических материалов, предлагаемых для иммобилизации PAO [1-4]. Бескислородная керамика, в частности, бориды, характеризуются повышенными физико-механическими характеристиками, а также обладают приемлемыми свойствами радиационного поглощения. Это делает их подходящими для использования в качестве защитных для изоляции PAO различной активности.

Для получения керамики с заданными свойствами используют различные способы формования и спекания. Одним из наиболее эффективных способов консолидации порошковых заготовок для получения керамических материалов с высокими показателями физико-механических свойств является электроконсолидация (ЭК) [5—7].

Инновационная технология ЭК представляет собой процесс квазиизостатического прессования при высоких давлениях (≥100 МПа) в электропроводящей среде — засыпке графита, с размером частиц 315—400 мкм. Особенность этих факторов позволяет быстро формовать изделия из предварительно полученных заготовок с применением одновременного нагрева и давления. Максимальная температура процесса не превышает 3000 °С.

Для использования технологии ЭК необходимы средства эффективного контроля и управления процессом. В ННЦ ХФТИ разработана и изготовлена установка, которая реализует технологию ЭК как в защитной среде, так и в вакууме [8]. Целью работы является проведение исследований по установлению оптимальных параметров процесса ЭК для получения керамик на основе HfB₂ и ZrB₂.

Экспериментальная часть

С целью отработки технологических режимов получения боридных керамик методом ЭК были выполнены эксперименты по получению опытных образцов HfB_2 и ZrB_2 . Составы шихт для получения образцов определяли исходя из предположения, что при заданных температурах и давлениях будет происходить синтез HfB_2 и ZrB_2 по реакциям:

$$HfO_2 + 0.5B_4C + 1.5C \rightarrow HfB_2 + 2CO^{\uparrow},$$
 (1)

$$\operatorname{ZrO}_2 + 0,5\operatorname{B}_4\operatorname{C} + 1,5\operatorname{C} \to \operatorname{ZrB}_2 + 2\operatorname{CO}^{\uparrow}.$$
 (2)

Шихты готовились с использованием порошков: диоксида гафния, состоящего из частиц сферической формы с преобладающим размером \leq 5мкм; диоксида циркония с преобладающим размером \leq 3мкм; карбида бора с преобладающим размером \leq 20 мкм и ламповой сажи с удельной поверхностью $10-20 \text{ м}^2/\text{г}.$

Исходные порошки смешивали и измельчали до размера частиц ≤ 5 мкм в течение 6 ч со скоростью 200 об/мин в планетарной мельнице «Pulverisette 6», производства фирмы «Фрич» (Германия). Материалы помольного стакана и мелющих тел были выполнены из WC.

Экспериментальные исследования по отработке режимов ЭК проводили при температурах 2000, 2100 и 2200 °C, давлении 40—45 МПа и временной выдержке 20, 30 и 60 мин.

Для контроля температуры использовались метки плавления из свинца, меди, циркония и корунда. Контроль за метками осуществляли рентгенографическим способом, описанным в работе [8].

Открытую пористость и плотность образцов определяли в соответствии с ГОСТ 2409—95 гидростатическим взвешиванием.

Предел прочности при изгибе определяли стандартным методом в соответствии с ДСТУ 3716—98. Микротвердость образцов определяли на микротвердомере ПМТ-3 методом вдавливания алмазных наконечников.

Микроструктуру HfB_2 и ZrB_2 исследовали с помощью сканирующего электронного микроскопа JESM-840.

Фазовый состав образцов определяли на диффрактометре ДРОН-3 в излучении медного анода, для ослабления K_{β} -составляющей применяли никелевый селективный фильтр.

Результаты и их обсуждение

В табл. 1 и 2 приведены соответственно свойства образцов HfB_2 и ZrB_2 в зависимости от температуры и времени выдержки.

Анализ приведенных в табл. 1 данных свидетельствует о том, что образцы керамики HfB_2 , полученные при температуре 2000 °C с выдержкой 30 и 60 мин, характеризуються не достаточно высокими показателями свойств: кажущаяся плотность составляет 7,95—8,07 и 8,30-8,55 г/см³ (72—78 % от теоретической); предел прочности при изгибе 150—160 и 200—220 МПа; твердость 10—12 и 17—20 ГПа соответственно.

Таблица 1

Свойства керамических образцов ${\rm HfB}_2$ в зависимости от температуры и времени выдержки

Темпе- ратура, °С	Вы- держка, мин	Свойства керамических образцов ${ m HfB}_2$						
		Линейная усадка, %	Открытая пори- стость, %	Кажущаяся плотность, г/см ³	Предел проч- ности при изгибе, МПа	Твердость, ГПа		
2000	30	12	11,5-12,0	7,95-8,07	150 - 160	10-12		
	60	14	7,0-8,5	8,30-8,55	200 - 220	17-20		
2100	20	20	0,0—1,0	10,78-10,88	320 - 350	27-29		
	30	20	0,0-1,0	10,82-10,90	350	28-30		

Таблица 2

Свойства керамических образцов ZrB₂ в зависимости от температуры и времени выдержки

	Вы- держка, мин	Свойства керамических образцов ${ m ZrB}_2$						
Темпе- ратура, °С		Линейная усадка, %	Открытая пори- стость, %	Кажущаяся плотность, г/см ³	Предел проч- ности при изгибе, МПа	Твердость, ГПа		
2100	30	10	12,0-15,0	4,95-5,00	120 - 150	5 - 7		
	60	13	9,0—11,0	5,30 - 5,55	170 - 200	12-14		
2200	20	20	0,0-1,0	5,90-6,02	270 - 310	20-22		
	30	20	0,0—1,0	6,00-6,03	300 - 310	20-23		

Повышение температуры до 2100 °С с временной выдержкой 20 мин приводит к существенному повышению физикомеханических свойств: плотность 10,78—10,88 г/см³ (97 % от теоретической), предел прочности при изгибе 320—350 МПа и твердость 27—29 ГПа. Дальнейшее увеличение времени выдержки до 30 мин не приводит к существенным изменениям, поэтому температура спекания 2100 °С и время выдержки 20 мин являются оптимальными.

Приведенные в табл. 2 данные показывают, что образцы ZrB_2 , полученные при температуре 2100 °C с выдержкой 30-60 мин, также не обладают высокими показателями свойств.

Повышение же температуры до 2200 °C с временем выдержки 20 мин приводит к существенному улучшению физикомеханических свойств: плотность 5,90—6,02 г/см³ (98,8 % от теоретической), предел прочности при изгибе 270—310 МПа и твердость 20—22 ГПа. Дальнейшее увеличение времени выдержки до 30 мин не приводит к существенным изменениям, поэтому температура спекания 2200 °C и время выдержки 20 мин являются оптимальными.

Достижение высоких показателей физико-механических свойств керамики обоих составов обусловлено их совершенной мелкокристаллической (2—6 мкм) и плотной структурой

Puc. 1. Микроструктура керамического образца диборида гафния

(> 95 % от теоретической). На рис. 1 для примера приведена микроструктура керамического образца диборида гафния.

На рис. 2 и 3 представлены фазовые составы полученных керамик HfB_2 и ZrB_2 . Анализ приведенных данных показывает, что синтезы диборида гафния и диборида циркония сопровождаются преимущественно формированием их соответствующих структур. Также обнаружено наличие карбида бора и графита, их присутствие не оказывает существенного влияния на свойства керамики.

Puc. 2. Рентгенограмма диборида гафния, полученного по технологии ЭК

Puc. 3. Рентгенограмма диборида циркония, полученного по технологии ЭК

Заключение

Проведены исследования по установлению оптимальных параметров процесса ЭК для получения керамик на основе ${\rm HfB}_2$ и ${\rm ZrB}_2.$

В результате проведенных исследований установлены оптимальная температура и время выдержки, при которых до-

стигаются наибольшие показатели свойств керамики на основе ${\rm HfB}_2$ и ${\rm ZrB}_2$: кажущаяся плотность 10,88 и 6,02 г/см³, предел прочности при изгибе 350 и 310 МПа, твердость 29 и 22 ГПа соответственно.

Исследованиями микроструктуры керамики установлено, что высокие показатели свойств HfB_2 и ZrB_2 определяются плотной и мелкокристаллической структурой. Рентгеноструктурными исследованиями образцов HfB_2 и ZrB_2 показано наличие соответствующих структур.

Полученные керамики являются перспективными для применения в качестве защитных материалов при обращении с PAO.

Библиографический список

1. Ядерная энергетика. Обращение с отработанным ядерным топливом и радиоактивными отходами: обзор по материалам зарубежной и отечественной печати / [Ажажа В. М., Белоус В. А., Саенко С. Ю. и др.]; под ред. акад. НАНУ И. М. Неклюдова. — К. : Наук. думка, 2006. — 253 с.

2. Исследование капсулирования горячим изостатическим прессованием отработавшей ТВС РБМК / Ажажа Ж. С., Неклюдов И. М., Саенко С. Ю. [и др.] // Атомная энергия. — Т. 103, вып. 6. — 2007. — С. 347—352.

3. Получение таблеток гафната и титаната диспрозия горячим прессованием / Красноруцкий В. С. Саенко С. Ю., Белаш Н. Н. [и др.] // Порошковая металлургия. — 2011 — № 11—12. — С. 43—50.

4. Теплофизические аспекты выбора параметров глубинного хранилища высокоактивных отходов и отработанного ядерного топлива / Ажажа Ж. С., Ледовска Л. Н., Пилипенко А. В. [и др.] // Ядерна та радіаційна безпека. — 2012. — № 1 (53). — С. 44—48.

5. Получение таблеток поглощающих материалов квазиизостатическим прессованием в графитовом порошке / Красноруцкий В. С., Саенко С. Ю., Н. Н. Белаш [и др.] // ВАНТ. — 2009. — № 2. — С. 85—89.

6. F.-C. Chang Modeling the Electroconsolidation Process / F.-C. Chang, Raymond R. Fessler // International Conference on Powder Metallurgy and Particulate Materials, New York, May 30 — June 3, 2000. — New York, 2000.

7. Zhang J. Field activated sintering techniques: a comparison and contrast / Zhang J., Zavaliangos A., Groza J. R. // P/M Science & Technology Briefs. -2003. - Vol. 5, N 3. - P. 17-21.

8. Применение метода электроконсолидации для получения керамики на основе $ZrO_2 - 3 \% Y_2O_3 / [Лобач К. В., Саенко С. Ю., Светличный Е. А., Сурков А. Е.] // ВАНТ. — 2011. — № 6 (76). — С. 99—102.$

Рецензент к. т. н. Савина Л. К.