Д-р хим. наук Е. Р. Андриевская^{1,2}, д-р хим. наук, чл.-кор. РАН В. В. Гусаров^{3,4}, канд. хим. наук О. А. Корниенко¹, А. В. Самелюк¹ (¹ Институт проблем материаловедения им. И. Н. Францевича НАН Украины, г. Киев, Украина; ²НТУУ «Киевский политехнический институт», г. Киев, Украина; ³Физико-технический институт имени А. Ф. Иоффе РАН, г. Санкт-Петербург, Российская Федерация; ⁴Государственный технологический институт (технический университет), г. Санкт-Петербург, Российская Федерация)

Взаимодействие оксидов церия и эрбия при температуре 1500 °C

Введение

Система CeO_2 — Er_2O_3 является перспективной для создания нового поколения альтернативных материалов твердых электролитов топливных элементов, работающих при средних и умеренных температурах (600—800 °C), высокотемпературной конструкционной керамики (теплоизоляционных материалов, составных частей ядерных реакторов), биоинертных керамических материалов для медицинской диагностики, имплантатов.

Разработка новых технологий и материалов требует изучения фазовых равновесий и свойств образующихся фаз в указанной системе при разных температурах [1—9].

Взаимодействие фаз в бинарных системах с оксидами церия и редкоземельными элементами начала и середины ряда лантаноидов ($CeO_2-La_2O_3$, $CeO_2-Sm_2O_3$) изучены [10; 11], сведения о фазовых равновесиях в системе $CeO_2-Er_2O_3$ отсутствуют.

В настоящей работе впервые изучено взаимодействие оксидов церия и эрбия при температуре 1500 °C во всем интервале концентраций.

Экспериментальная часть

В качестве исходных веществ использовали церий азотнокислый $Ce(NO_3)_3\cdot 6H_2O$ марки «ч», азотную кислоту марки «ч.д.а.» и Er_2O_3 марки «ЭрО-2» с содержанием основного компонента 99,99 %.

Образцы готовили с концентрационным шагом 1—5 мол. % из растворов нитратов с последующим выпариванием и разложением нитратов на оксиды путем прокаливания при 1200 °C в течение 2 ч. Порошки прессовали в таблетки диаметром 5 и высотою 4 мм под давлением 10 МПа. Для исследования фазовых соотношений при 1500 °C термообработку образцов проводили в две стадии: в печи с нагревателями H23U5T (фехраль) при 1100 °C (195 ч) и в печи с нагревателями из дисилицида молибдена (MoSi₂) при 1500 °C (170 ч) на воздухе. Скорость подъема температуры составляла 3,5 град/мин. Фазовый состав образцов исследовали методами рентгеновского, петрографического и микроструктурного анализов.

Рентгенофазовый анализ образцов выполняли методом порошка на установке ДРОН-1,5 при комнатной температуре (Си- K_{α} -излучение). Скорость сканирования составляла 1—4 град/мин в диапазоне углов 20 от 15 до 80°. Периоды кристаллических решеток рассчитывали методом наименьших квадратов, используя программу LATTIC с погрешностью не ниже 0,0004 нм для кубической фазы.

Кристаллооптические характеристики фаз определяли на поляризационном микроскопе МИН-8 с помощью высокопреломляющих иммерсионных жидкостей на основе йодистого метилена, трехбромистого мышьяка и сплавов серы и селена. Точность определения показателей преломления равна ±0,02.

Микроструктуры изучали на шлифах отожженных образцов с использованием данных локального рентгеноспектрального анализа (ЛРСА), выполненного на установке SUPERPROBE-733 (JEOL, Japan, Palo Alto, CA) в обратно отраженных электронах (BEI) и во вторично отраженных электронах (SEI). Состав образцов контролировали с помощью спектрального и химического анализа выборочно.

Результаты и их обсуждение

Изучение твердофазного взаимодействия CeO₂ (тип флюорита, F) и Er_2O_3 (кубическая модификация оксидов редкоземельных элементов, C) при температуре 1500 °C показало, что в системе CeO₂— Er_2O_3 образуются два типа твердых растворов кубической структуры: на основе флюорита F-CeO₂ и C- Er_2O_3 , которые разделены двухфазным полем (C+F) (рис. 1).

Исходный химический и фазовый состав образцов, обожженных при 1500 °C, параметры элементарных ячеек фаз, находящихся в равновесии при заданной температуре, приведены в таблице.

Границы областей гомогенности твердых растворов на основе F-CeO₂ и C-Er₂O₃ определены составами, содержащими 30-35 мол. % Er₂O₃ и 60-65 мол. % Er₂O₃ при 1500 °С (табл.). Изменение периодов кристаллических решеток твердых растворов F-CeO₂ и C-Er₂O₃ в зависимости от концентрации Er₂O₃ представлено на рис. 2.

Из представленных

данных следует, что растворимость Er_2O_3 в F-модификации CeO₂ составляет 30 мол. % при 1500 °C. Параметр элементарной ячейки уменьшается от a = 0,5409 нм для чистого CeO₂ до a = 0,5369 нм (1500 °C) для предельного состава

твердого раствора.

Растворимость СеО₂ в кубической С-модификации оксида эрбия составляет 45 мол. % СеО₂ при 1500 °С. Параметр элементарной ячейки увеличивается от a = 1,0531 нм для чистого Er_2O_3 до a = = 1,0639 нм (1500 °С) для предельного состава твердого раствора.

Рентгеновские и петрографические исследования подтверждены результатами электронной микроскопии.

Рис. 2. Концентрационная зависимость параметров элементарных ячеек твердых растворов на основе F-CeO₂ (●) и C-Er₂O₃ (◊) в системе CeO₂—Er₂O₃ после обжига образцов при 1500 °C

Таблица

Химический состав, мол. %		Фазовый состав	Параметры элементарных ячеек фаз, нм ($a \pm 0,0002$)	
CeO ₂	$\mathrm{Er}_{2}\mathrm{O}_{3}$	+usobbin cocrab	< F >	<c></c>
			a	a
0	100	<C-Er ₂ O ₃ $>$	—	1,0531
1	99	<C-Er ₂ O ₃ $>$	—	1,0554
2	98	<C-Er ₂ O ₃ $>$	—	1,0537
3	97	<C-Er ₂ O ₃ $>$	—	1,0544
4	96	<C-Er ₂ O ₃ $>$	—	1,0539
5	95	<C-Er ₂ O ₃ $>$	—	1,0537
10	90	<C-Er ₂ O ₃ $>$	—	1,0558
15	85	<C-Er ₂ O ₃ $>$	—	1,0566
20	80	<c-er<sub>2O₃></c-er<sub>	—	1,0583
25	75	<C-Er ₂ O ₃ $>$	—	1,0594
30	70	<C-Er ₂ O ₃ $>$	—	1,0601
35	65	<c-er<sub>2O₃></c-er<sub>	—	1,0617
40	60	<c-er<sub>2O₃> осн. + + <f-ceo<sub>2>сл.</f-ceo<sub></c-er<sub>	_	1,0623
45	55	<c-er<sub>2O₃> осн. + + <f-ceo<sub>2> сл. ↑</f-ceo<sub></c-er<sub>	_	1,0639
50	50	$ \begin{array}{c} < \mathbf{C} \cdot \mathbf{Er}_2 \mathbf{O}_3 > \mathbf{och.} + \\ + < \mathbf{F} \cdot \mathbf{CeO}_2 > \uparrow \end{array} $	0,5363	1,0638
55	45	$ \begin{array}{c} < \mathbf{C} \cdot \mathbf{Er}_2 \mathbf{O}_3 > + \\ + < \mathbf{F} \cdot \mathbf{CeO}_2 > \uparrow \end{array} $	0,5363	1,0646
60	40	$\begin{array}{c} <\!\!\operatorname{C-Er}_2\!\operatorname{O}_3\!\!>\downarrow + \\ + <\!\!\operatorname{F-CeO}_2\!\!>\!\uparrow \end{array}$	0,5363	1,0649
65	35	$\substack{<\text{F-CeO}_2>\uparrow +\\ +<\text{C-Er}_2\text{O}_3>\downarrow}$	0,5361	1,0634
70	30	<F-CeO ₂ $>$	0,5369	—
75	25	<F-CeO ₂ $>$	0,5368	_
80	20	<F-CeO ₂ $>$	0,5377	—
85	15	<F-CeO ₂ $>$	0,5386	_
90	10	<F-CeO ₂ $>$	0,5393	—
95	5	<F-CeO ₂ $>$	0,5397	—
100	0	<F-CeO ₂ $>$	0,5409	—

Исходный химический (мол. %) и фазовый составы образцов системы $CeO_2-Er_2O_3$ после обжига при 1500 °C (170 ч) по данным РФА и петрографии

Обозначения фаз: <C> — твердые растворы на основе кубической модификации ${\rm Er}_2{\rm O}_3$; <F> — твердые растворы на основе кубической модификации со структурой типа флюорита CeO₂. Другие условные обозначения: осн. — фаза, составляющая основу; сл. — следы фазы, \uparrow — содержание фазы увеличивается, \downarrow — количество фазы уменьшается.

На рис. 3 представлены типичные микроструктуры образцов системы $CeO_2-Er_2O_3$ в зависимости от химического и фазового состава после обжига при $1500\,^\circ C$.

Микроструктура кубической модификации C- Er_2O_3 и твердых растворов на ее основе показана на рис. 3, a-e. Видно, что на шлифах проявляются структурные составляющие в виде монолитных областей различных размеров и поры двух видов: изолированные округлой формы и сообщенные по границам монолитных областей. В последнем случае поры могут образовывать сплошные каналы.

Отмечено, что с увеличением содержания оксида церия размер монолитных элементов структуры уменьшается (рис 3, a-i). Для однофазного образца, содержащего 4 мол. % CeO₂ — 96 мол. % Er₂O₃, характерно наличие монолитных областей размерами $\sim 20-40$ нм в окружении более мелкозернистых элементов структуры (< 5 нм), между которыми имеются поры размером менее 1 мкм.

При добавках CeO₂ структура гомогенизируется, становится более однородной, состоит из элементов размерами $\sim 3-5$ мкм с редкими включениями более крупных размеров (≥ 10 мкм), в которых присутствуют поры двух разновидностей, но основная часть пор распределена между монолитными элементами структуры.

С дальнейшим увеличением концентрации CeO_2 структура изменяется. Характерной особенностью является снижение доли пористости между элементами структуры. Средний размер пор уменьшается, и они сосредоточены в монолитных элементах структуры. Между монолитными элементами структуры появляются непрерывные поверхности сопряжения.

Микроструктуры двухфазных образцов (C+F) представлены на рис. 3, $\partial - 3$. Для образца, содержащего 40 мол. % CeO₂ — 60 мол. % Er₂O₃, характерно гетерофазное состояние, выявлены следующие структурные составляющие: базовая (матричная) — представляет собой твердый раствор на основе C-Er₂O₃, в котором находятся более темные изолированные включения F-CeO₂ (рис. 3, ∂). Все поры являются изолированными, диапазон размеров пор ~ 1—5 мкм. В образце, содержащем 65 мол. % CeO₂ — 35 мол. % Er₂O₃, где основу составляет твердый раствор на основе F-CeO₂, вторая C-фаза проявляется в виде прожилок в монолитных элементах структуры (рис. 3, 3).

Микроструктура однофазного образца (<F-CeO₂>), содержащего 75 мол. % CeO₂ —25 мол. % Er_2O_3 , проявляется в виде

 $\it Puc.~3.~$ Микроструктура образцов в системе $\rm CeO_2-Er_2O_3$ после обжига образцов при 1500 °C :

a) 100 мол. % Er_2O_3 , <C- Er_2O_3 >, BEI, × 2000; б) 3 мол. % $\text{CeO}_2 - 97$ мол. % Er_2O_3 , <C- Er_2O_3 >, BEI, × 2000; e) 4 мол. % $\text{CeO}_2 - 96$ мол. % Er_2O_3 , <C- Er_2O_3 >, BEI, × 2000; e) 10 мол. % $\text{CeO}_2 - 90$ мол. % Er_2O_3 , <C- Er_2O_3 >, BEI, × 2000; d) 40 мол. % $\text{CeO}_2 - 60$ мол. % Er_2O_3 , <C- Er_2O_3 >, BEI, × 2000; d) 40 мол. % $\text{CeO}_2 - 60$ мол. % Er_2O_3 >, <C- Er_2O_3 >, BEI, × 2000; d) 40 мол. % $\text{CeO}_2 - 60$ мол. % Er_2O_3 >, <C- Er_2O_3 >, REI, × 2000; c betta matrix ma

Окончание рис. 3.

монолитной матрицы, в которой присутствуют только изолированные поры (рис. 3, *u*). Отмечено, что с увеличением содержания оксида церия F-фаза становится более мелкозернистой, уменьшаются размеры пор.

Заключение

Изучено взаимодействие фаз и структурные превращения в системе CeO_2 — Er_2O_3 при 1500 °C во всем интервале концентраций. Характерным для указанной системы является наличие ограниченных твердых растворов на основе кубических модификаций C- Er_2O_3 и F-CeO₂. Определены параметры элементарных ячеек фаз, находящихся в равновесии при заданной температуре.

Результаты исследований могут быть использованы для оптимизации выбора составов при разработке нового класса композиционных материалов с повышенными характеристиками.

Работа выполнена при поддержке Украинского

(«ДФФД») и Российского («РФФИ») Государственных Фондов Фундаментальных Исследований (грант «ДФФД-РФФИ-2011» № Ф40.3/038).

Библиографический список

1. Ceria-based materials for solid oxide fuel cells $\,/$ Kharton V. V., Figueire-do F. M., Navarro L. [etc.] // J. Mater. Sci. - 2001. - Vol. 36. - P. 1105–1117.

 $\label{eq:stokenergy} \begin{array}{l} \text{2. Sato K. Effect of rare-earth oxides on fracture properties of ceria ceramics / Sato K., Yugami H., Hashida T. // J. Mater. Sci. <math display="inline">-$ 2004. - Vol. 39. - P. 5765–5770. \\ \end{array}

3. Study on analysis crystal structure in CeO₂ doped with Er_2O_3 or Gd_2O_3 / Zhu Baolin, Tahara Yuki, Yasunaga Kazufumi [etc.] // J. of Rare Earths. — 2010. — Vol. 28. — P. 164—167.

 $4.\ Kimpton\ J.\ Investigation of electrical conductivity as f function of dopant-ion radius in the systems <math display="inline">Zr_{0.75}Ce_{0.08}M_{0.17}O_{1.92}$ (M = Nd, Sm,Gd, Dy, Ho, Y, Er, Yb, Sc) / Kimpton J., Randle T. H., Drennan J. // Solid State Ionics. — 2002. — Vol. 149. — P. 89—98.

5. Anjana Prabhakaran Sreekumari. Microwave dielectric properties of (1-x) CeO_{2-x} RE₂O₃ (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, and Y) ($0 \le x \le 1$) ceramics / [Anjana Prabhakaran Sreekumari, Joseph Tony, Mailadil Tomas Sebastian] // J. of Alloys and Compounds. — 2010. — Vol. 490. — P. 208—213.

6. Effects of swift heavy ion irradiation on the structure of $\rm Er_2O_3$ -doped $\rm CeO_2$ / Zhu B., Ohno H., Kosugi S. [etc.] // Nuclear Instruments and Methods in Physics Research. - 2010. - Vol. 268, B. - P. 3199–3202.

7. Synthesis and optical investigation of systems involving mixed Ce and Er oxides / Pedrosa A. M. Garrido, da Silva J. E. C., Pimentel P. M. [etc.] // J. of Alloys and Compounds. — 2004. — Vol. 374. — P. 223—225.

8. Influence of erbia or europia doping on crystal structure and microstructure of ceria-zirconia (CZ) solid solutions / [Maschio Stefano, Aneggi Eleonora, Trovarelli Alessandro, Sergo Valter] // Ceramics International. — 2008. — Vol. 34. — P. 1327—1333.

9. Photoluminescence of Er-containing metal oxide in U-band / Ito Takaaki, Yoshino Masahito, Iwasaki Kouta [etc.] // Proceedings of International Symposium on Eco Topia Science. — 2007. — ISETS07. — P. 128—130.

10. Phase Relation Studies in the CeO₂—La₂O₃ System at 1100—1500 °C / [Andrievskaya E. R., Kornienko O. A., Sameljuk A. V., Ali Sayir] // J. Eur. Ceram. Soc. -2011. - Vol. 31, $N^{\circ}7. - P. 1277-1283$.

11. Фазовые соотношения в системе CeO_2 — Sm_2O_3 при температуре 1500 °С / Андриевская Е. Р., Корниенко О. А., Городов В. С. [и др.] // Современные проблемы физического материаловедения. — К. : ИПМ НАН Украины. — 2008. — № 17. — С. 25—29.

Рецензент к. т. н. Варганов В. В.