Я.С.Тищенко

(Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, м. Київ, Україна)

Проекція поверхні піквідусу діаграми стану системи Al₂O₃—HfO₂—Er₂O₃

Вступ

Вивчення взаємодії у системі Al_2O_3 —HfO₂—Er₂O₃ є продовженням систематичних досліджень діаграм стану потрійних систем за участю оксидів алюмінію, гафнію та лантаноїдів. Оксид ербію, як і інші оксиди ітрієвої підгрупи лантаноїдів, є ефективним стабілізатором HfO₂. Система Al_2O_3 —HfO₂—Er₂O₃ цікава з точки зору одержання в ній високотемпературних конструкційних та функціональних матеріалів.

Подвійні обмежуючі системи вивчені досить детально і побудовано їх діаграми стану [1—12] (рис. 1).

ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2012, № 112125

Ліквідус діаграми стану системи Al_2O_3 —HfO₂ — евтектичного типу з координатами евтектики 33 %¹ HfO₂, 1890 °C [1]. Нові фази у системі не утворюються. На ліквідусі знаходиться також метатектична точка з координатами 18 % Al_2O_3 , 2470 °C, що відтворює нонваріантний процес фазового перетворення F \Rightarrow T+L твердих розчинів на основі HfO₂ з кубічною структурою типу флюориту (F) у тверді розчини з тетрагональною структурою (T). Фазове перетворення твердих розчинів T у тверді розчини з моноклінною структурою (M) відбувається у твердому стані при 1790 °C за евтектоїдним механізмом T \Rightarrow M+Al₂O₃ (AL). Розчинність на основі фази Al₂O₃ практично відсутня. На основі фази HfO₂ утворюється вузька область твердих розчинів, яка за температури евтектики сягає 5 %, метатектики — 2 %.

У системі Al₂O₃—Er₂O₃ виявлено три сполуки: з структурою типу гранату $\text{Er}_{3}\text{Al}_{5}\text{O}_{12}$ ($\text{Er}_{3}\text{A}_{5}$), що плавиться конгруентно за 1960 °C, з перовскитною ромбічною структурою ErAlO₃ (ErA), що плавиться конгруентно за 1963 °C, та з моноклінною структурою $Er_4Al_2O_9$ (Er_2A), що плавиться конгруентно за 1990 °C [2—6]. Помітної розчинності на основі компонентів і подвійних сполук не виявлено. Фазові перетворення $X \leftrightarrows H \leftrightarrows A \leftrightarrows B \leftrightarrows C$, характерні для оксидів рідкісних земель, у Er₂O₃ реалізуються, фактично, при перетворенні Н ≒ С у вузькому інтервалі близько 2320 °С [7], тоді як перехід Х 🛱 Н відбувається близько до температури плавлення. Тому приймаємо існування фазового переходу гексагональної $H-Er_2O_3$ (H) у кубічну $C-Er_2O_3$ (C) структуру, який проявляється на ліквідусі у вигляді метатектичної точки з координатами 2320 °C, 96 % Er₂O₃. У системі виявлено чотири евтектики: AL+Er₃A₅ з координатами 1810 °С, 19 % Er₂O₃, Er₃A₅ + ErA з координатами 1930 °C, 42,5 % Er₂O₃, ErA + Er₂A з координатами 1920 °С, 57 % Ег₂О₃ та Ег₂А + С з координатами 1880 °С, 74 % Ег₂О₃.

Система HfO₂—Er₂O₃ [8—12] евтектичного типу з координатами евтектики L \leftrightarrows C+H 2370 °C, 85,5 % Er₂O₃. На ліквідусі знайдено перитектичну точку L+F \leftrightarrows C з координатами 2410 °C, 80 % Er₂O₃. На основі HfO₂ утворюються широкі області F, T та M твердих розчинів, а на основі Er₂O₃ — широка область твердих розчинів з кубічною структурою C-Er₂O₃. У системі в області твердих розчинів F нижче 1510 °C утворюється сполука-надструктура Er₄Hf₃O₁₂ (δ-фаза [11]) (Er₂H₃) з ромбоедричною структурою, що не має області гомогенності (просторова група R3) [10]. Фазові перетворення HfO₂ (F \leftrightarrows T \leftrightarrows M) та Er₂O₃ (H \leftrightarrows C) відбуваються у твердому стані і на лініях ліквідусу не проявляються.

¹ Тут і далі концентрацію наведено у % (мол.).

¹²⁶ ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2012, № 112

Відомості про характер взаємодії у системі Al_2O_3 —HfO₂— Er_2O_3 в літературі відсутні.

Аналіз взаємодії в обмежуючих подвійних системах Al_2O_3 — Y_2O_3 [13; 14] та Al_2O_3 — Er_2O_3 [15] свідчить про їх велику поді бність, що зумовлена близькими розмірами іонних радіусів Er (0,881) та Y (0,892) [16]. Це дозволило зробити припущення, що взаємодія у досліджуваній системі Al_2O_3 — HfO_2 — Er_2O_3 бу де подібною до взаємодії у системі Al_2O_3 — HfO_2 — Y_2O_3 і також визначатиметься будовою обмежуючих систем за відсутності потрійних сполук та значних областей розчинності. Тому слід очікувати рівноваг сполук Er_3A_5 , ErA та Er_2A системи Al_2O_3 — Er_2O_3 з твердими розчинами F та надструктурою Er_2H_3 системи HfO_2 — Er_2O_3 , а також вихідними оксидами Al_2O_3 , HfO_2 , Er_2O_3 і фазами на їх основі.

Метою даної роботи є побудова проекції ліквідусу діаграми стану системи Al_2O_3 — HfO_2 — Er_2O_3 на площину концентраційного трикутника.

Експериментальна частина

Зразки для досліджень готували з порошків Al_2O_3 марки ЧДА (ТУ 6-09-426-75), HfO_2 марки ГФО-2 з вмістом основної речовини 99,95 % Донецького заводу хімреактивів та Er_2O_3 високої чистоти марки ЭРО-И ОСТ 48-204-81.

Зразки відпалювали у повітрі в печі ШП-1 з силітовими нагрівачами за 1250 °С протягом 6 год, потім плавили в установці для високотемпературного диференціального термічного аналізу [17] і відпалювали нижче температури солідусу, встановленої на плавлених зразках, протягом 1 год. Відпалені зразки досліджували методами високотемпературного диференціального термічного аналізу (ВДТА) до 2300 °С [17], рентгенофазового (ДРОН-1.5, Cu- K_{α} -випромінювання, Ni фільтр), кристалооптичного аналізу (МИН-8, високозаломлюючі імерсійні рідини та сплави сірки з селеном) та вивчення мікроструктури (JEOL SUPERPROBE 733). Точність вимірювання показників заломлення за допомогою імерсійних рідин становила ± 0,003, а сплавів — ± 0,02.

Результати та їх обговорення

За результатами досліджень побудовано проекцію поверхні ліквідусу (рис. 2) діаграми стану системи Al_2O_3 — HfO_2 — Er_2O_3 на площину концентраційного трикутника. Координати

нонваріантних точок системи Al_2O_3 — HfO_2 — Er_2O_3 , які встановлювали шляхом аналізу мікроструктур сплавів, а також методом ВДТА, наведено у таблиці.

Puc. 2. Проекція поверхні ліквідусу діаграми стану системи Al₂O₃—HfO₂—Er₂O₃ на площину концентраційного трикутника: О — склади експериментальних сплавів

TA	•	•	4.1	
Коорлинати нонва	рантних точок	лаграми стану	системи А 👦	O ₂ —HtO ₂ —Er ₂ O ₂

Таблиця

Точки	Температура, °С	Склад, % (мол.)			Нонваріантні
рівноваги		Al_2O_3	HfO_2	Er_2O_3	рівноваги
e ₄	1950	29	8	63	$L \leftrightarrows Er_2A + F$
e ₈	1890	43	9	48	$L \leftrightarrows ErA+F$
E_1	1880	38	8	54	$L \leftrightarrows ErA+F+Er_2A$
E_2	1875	23	7	70	$L \leftrightarrows Er_2A+F+C$
e ₁₀	1855	52	12	36	$L \leftrightarrows Er_3A_5 + F$
E_3	1835	50	10	40	$L \leftrightarrows Er_3A_5 + F + ErA$
U	1780	69	22	9	$L+T \leftrightarrows F+AL$
${ m E}_4$	1745	71	12	17	$\mathbf{L}\leftrightarrows\mathbf{AL}{+}\mathbf{F}{+}\mathbf{Er}_{3}\mathbf{A}_{5}$

128 ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2012, № 112

На рис. 3 показано мікроструктури деяких сплавів системи Al_2O_3 —HfO₂—Er₂O₃.

 $Puc.\ 3.$ Мікроструктури деяких сплавів системи $\rm Al_2O_3-HfO_2-Er_2O_3:$ a— трифазна евтектика $\rm AL+F+Er_3A_5$ (E_4): сіра фаза — $\rm Er_3A_5$, чорна фаза — AL, світла фаза — F; δ — трифазна евтектика $\rm Er_3A_5+F+ErA$ (E_3): сіра фаза — Er_3A_5, світла фаза — ErA, білі включення — фаза F; e— квазіподвійна евтектика $\rm e_{10}$: світлі включення — фаза F, темна матриця — фаза Er_3A_5; z— трифазна евтектика $\rm eras F; e$ — трифазна евтектика $\rm Er_2A_5$, світла фаза — ErA, білі включення — фаза F; e— квазіподвійна евтектика $\rm e_{10}$: світлі включення — фаза F, темна матриця — фаза Er_3A_5; z— трифазна евтектика ErA+F+Er_2A (E_1): світло-сіра окремі первинні кристали фази Er_2A у трифазній евтектиці (сіра фаза — ErA, світло-сіра фаза — Er_2A, світлі волокна — фаза F); e— квазіподвійна евтектика $\rm Er_2A+F$ (E_8): сіра фаза — ErA, світла фаза — F; e— трифазна евтектика $\rm Er_2A+F+C$ (E_2): світлі дрібні включення — фаза F, світлі крупні включення — фаза C, темна матриця — фаза Er_2A

З рис. 2 видно, що потрійні сполуки в системі Al_2O_3 — HfO_2 — Er_2O_3 не утворюються. Поверхня ліквідусу діаграми стану утворена вісьмома полями первинної кристалізації фаз на основі флюоритоподібної (F) та тетрагональної (T) кристалічних модифікацій HfO_2 , H- та C-кристалічних модифікацій Er_2O_3 (H — гексагональна високотемпературна, C — кубічна низькотемпературна структури оксидів P3M) та фаз Al_2O_3 (AL), $Er_3Al_5O_{12}$ (Er_3A_5), $ErAlO_3$ (ErA) та $Er_4Al_2O_9$ (Er_2A). Найбільшу частину поверхні ліквідусу займають поля первинної кристалізації фаз F та T на основі сполуки HfO_2 , як найбільш тугоплавкої та термодинамічно стабільної в системі. Вони обмежені загальною огинаючою $e_7UE_4e_{10}E_3e_8E_1e_4E_2p$ (рис. 2) і розділяються кривою e_1U трифазної моноваріантної рівноваги (F \leftrightarrows T+L) на два поля: T (огинаюча крива e_7Ue_1) та F (огинаюча крива $e_1UE_4e_{10}E_3e_8E_1e_4E_2p$).

Координати потрійної трансформаційної (перехідної) точки U (L+T ≒ AL+F) (таблиця) визначено напрямком пролягання та перетином ліній моноваріантних рівноваг е₇U (L ≒ AL+T) та e₁U (F ≒ T+L). За даними ВДТА температура у точці U становить 1780 °C. Координати потрійної евтектичної точки Е₄, в якій проходить нонваріантна конгруентна реакція $L \leftrightarrows AL + F + Er_3A_5$, визначали аналізом мікроструктур сплавів та за даними ВДТА (1745 °C) (таблиця). Мікроструктуру трифазної евтектики Е₄ наведено на рис. 3, а її склад — у таблиці. Мікроструктуру трифазної евтектики E_3 наведено на рис. 3, δ , а її склад — у таблиці. Температура плавлення цієї евтектики за даними ВДТА становить 1835 °C. Координати точки квазіподвійної евтектики е₁₀ визначено аналізом мікроструктури відповідного сплаву та ВДТА (таблиця). Температура її плавлення становить 1855 °С, мікроструктуру евтектики показано на рис. 3, в. Ця точка є перевальною (сідловинною) і лежить на умовно квазібінарному перерізі Er₃A₅—F. Петрографічним дослідженням, а також методом ВДТА встановлено координати потрійної евтектичної точки E₁ (таблиці). Структуру цієї евтектики показано на рис. 3, ∂ , температура її плавлення — 1880 °С. Координати квазіподвійної евтектичної точки е₈ (таблиця) визначено аналізом мікроструктури та ВДТА відповідного сплаву.

Мікроструктура трифазної евтектики E_2 (рис. 3, *e*) являє собою темну матрицю фази Er_2A , в якій знаходяться дрібні кристали фази F та дещо крупніші кристали фази C. Координати квазіподвійної евтектичної точки e_4 визначено петрографічно, а також методом ВДТА (таблиця).

130 ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2012, № 112

Як показано вище, поверхня ліквідусу діаграми стану системи Al_2O_3 —HfO₂— Er_2O_3 утворена вісьмома полями первинної кристалізації фаз на основі F- та T-HfO₂, H- та C- Er_2O_3 , а також фаз AL, Er_3A_5 , ErA та Er_2A . Рівноважна кристалізація сплавів характеризується чотирма нонваріантними чотирифазними конгруентними процесами при 1880 (E_1), 1875 (E_2), 1835 (E_3), 1745 (E_4) та одним нонваріантним чотирифазними інконгруентними процесом при 1780 °C (U).

Висновки

Уперше побудовано проекцію поверхні ліквідусу діаграми стану системи Al_2O_3 — HfO_2 — Er_2O_3 на площину концентраційного трикутника.

Максимальна температура у вивченій системі становить 2820 °С і відповідає точці плавлення сполуки HfO_2 . Мінімальна температура у системі становить 1745 °С і відповідає трифазній евтектиці $AL+F+Er_3A_5$ (E₄). Нових фаз, а також помітних областей твердих розчинів у системі Al_2O_3 — HfO_2 — Er_2O_3 не виявлено. Оскільки кристалізація в системі завершується евтектичними реакціями, це дозволяє реалізувати в матеріалах потрійної системи унікальні властивості Т- та F-твердих розчинів на основі HfO_2 у поєднанні із властивостями інших її фаз у вигляді композиційних матеріалів.

Бібліографічний список

1. Лопато Л. М. Система $\rm HfO_2-Al_2O_3$ / Л. М. Лопато, А. В. Шевченко, Г. И. Герасимюк // Изв. АН СССР. Неорган. матер. — 1976. — Т. 12, № 9. — С. 1623—1626.

2. Bertaut F. Etude des combinaisons des oxydes des terres rares avec l'alumine et la galline / F. Bertaut F. Forrat // C. R. Acad. Sci., Paris. — 1956. — Vol. 243, $N \ge 17. - P. 1219 - 1222.$

3. Schneider S. J. Solid state reactions involving oxides of trivalent cations / S. J. Schneider, R. S. Roth, J. L. Waring // J. Res. Nat. Bur. Stand. -1961. - Vol. 65A, \mathbb{N} 4. - P. 345-374.

4. *Mizuno M*. Phase diagrams of the systems Al_2O_3 — Ho_2O_3 and Al_2O_3 — Er_2O_3 at high temperatures / M. Mizuno, T. Yamada, T. Nogushi // J. Ceram. Soc. Jap. – 1979. – Vol. 87, Ne 8. – P. 404–412.

5. Wu P. Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminum oxide binary systems / P. Wu, A. D. Pelton // J. Alloys and Comp. — 1992. — N 179. — P. 259—287.

6. Yamane H. Phase transition of rare-earth aluminates (RE4Al2O9) and rare earth gallates / H. Yamane, K. Ogawara, M. Omori, T. Hirai // J. Amer. Ceram. Soc. -1995. -Vol. 78, N 9. - P. 2385-2390.

ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2012, № 112 131

7. Лопато Л. М. Полиморфные превращения окислов редкоземельных элементов при высоких температурах / Л. М. Лопато, А. В. Шевченко, А. Е. Кущевский, С. Г. Тресвятский // Изв. АН СССР. Неорган. материалы. — 1974. — Т. 10, № 8. — С. 1481—1487.

8. *Спиридонов* Ф. М. Система HfO₂—Er₂O₃ / Ф. М. Спиридонов, Л. Н. Комиссарова // Журн. неорган. химии. — 1970. — Т. 15, № 3. — С. 875—878.

9. Шевченко А. В. Взаимодействие HfO_2 с Y_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 и Lu_2O_3 при высоких температурах / А. В. Шевченко, Л. М. Лопато, И. Е. Кирьякова // Изв. АН СССР. Неорган. материалы. — 1984. — Т. 20, № 12. — С. 1991—1996.

10. Лопато Л. М. Синтез некоторых цирконатов (гафнатов) РЗЕ / Л. М. Лопато, В. П. Редько, Г. И. Герасимюк, А. В. Шевченко // Порошковая металлургия. — 1990. — № 4. — С. 73—75.

11. Лопато Л. М. Синтез и свойства соединений $M_4Zr_3O_{12}$ и $M_4Hf_3O_{12}$ (М — Р.З.Э.) / Л. М. Лопато, В. П. Редько, Г. И. Герасимюк, А. В. Шевченко // Неорган. материалы. — 1991. — Т. 27, № 8. — С. 1718—1722.

12. Duran P. Phase relations and ordering in the system erbia — hafnia // P. Duran, C. Pascual, J-P. Coutures, S. R. Skaggs // J. Amer. Ceram. Soc. — 1983. — Vol. 66, $N \ge 2.$ — P. 101—106.

13. *Лакиза С.Н*. Взаимодействие в системе Al₂O₃—ZrO₂—Y₂O₃ / С. Н. Лакиза, Л. М. Лопато, А. В. Шевченко // Порошковая металлургия. — 1994. — № 9—10. — С. 46—51.

Діаграма стану системи Al_2O_3 —HfO₂—Y₂O₃. І ізотермічні перерізи при 1250 та 1650 °С / С. М. Лакиза, Я. С. Тищенко, В. П. Редько, Л. М. Лопато // Порошковая металлургия. — 2008. — № 3/4. — С. 131—141.

15. Лакиза С. М. Діаграма стану системи Al₂O₃—ZrO₂—Er₂O₃. І. Триангуляція та ізотермічні перерізи діаграми стану при 1250 та 1650 °С / С. М. Лакиза, В. П. Редько, Л. М. Лопато // Порошковая металлургия. — 2006. — № 11/12. — С. 55—64.

16. *Shannon R. D.* Effective ionic radii in oxides and fluorides / R. D. Shannon, C. T. Prewitt // Acta Cryst. — 1969. — B. 25, № 5. — P. 924 — 946.

17. Кочержинский Ю. А. Аппарат для ДТА с температурным датчиком до 2200 °С / Кочержинский Ю. А., Шишкин Е. А., Василенко В. И. // Диагр. сост. мет. систем. — М.: Наука, 1971. — С. 245—249.

Рецензент к. т. н. Криворучко П. П.