УДК 621.762

Д-р хим. наук Е. Р. Андриевская^{1,2}, канд. хим. наук О. А. Корниенко², А. А. Макудера², А. В. Самелюк², канд. хим. наук Л. Н. Спасенова¹ (¹НТУУ «Киевский политехнический институт», г. Киев, Украина; ² Институт проблем материаловедения им. И. Н. Францевича НАН Украины, г. Киев, Украина)

Взаимодействие оксидов церия и эрбия при температуре 1100 °C

Введение

Система CeO_2 — Er_2O_3 является перспективной для создания нового поколения альтернативных материалов твердых электролитов топливных элементов, работающих при средних и умеренных температурах (600—800 °C), высокотемпературной конструкционной керамики (теплоизоляционных материалов, составных частей ядерных реакторов), биоинертных керамических материалов для медицинской диагностики, имплантатов.

Разработка новых технологий и материалов требует изучения фазовых равновесий и свойств образующихся фаз в указанной системе при разных температурах [1—9].

Фазовые соотношения в бинарных системах с оксидами церия и редкоземельными элементами начала, середины ряда лантаноидов (CeO₂—La₂O₃, CeO₂—Sm₂O₃), изучены [10; 11], сведения о фазовых равновесиях в системе CeO₂—Er₂O₃ при 1500 °C представлены ранее в [12].

В настоящей работе впервые изучено взаимодействие оксидов церия и эрбия при температуре 1100 °С во всем интервале концентраций.

Экспериментальная часть

В качестве исходных веществ использовали церий азотнокислый Ce(NO₃)₃·6H₂O марки «ч», азотную кислоту марки «ч.д.а.» и Er₂O₃ марки «ЭрО-2» с содержанием основного компонента 99,99 %.

Образцы готовили с концентрационным шагом 1-5 мол. % из растворов нитратов с последующим выпариванием и разложе-

нием нитратов на оксиды путем прокаливания при 1200 °C в течение 2 ч. Порошки прессовали в таблетки диаметром 5 и высотою 4 мм под давлением 10 МПа. Термообработку образцов проводили в печи с нагревателями H23U5T (фехраль) при 1100 °C (16 800 ч) на воздухе. Скорость подъема температуры составляла 3,5 град/мин. Фазовый состав образцов исследовали методами рентгеновского, петрографического и микроструктурного анализов.

Рентгенофазовый анализ образцов выполняли методом порошка на установке ДРОН-1,5 при комнатной температуре (Си K_{α} -излучение). Скорость сканирования составляла 1—4 град/мин в диапазоне углов 20 от 15 до 80°. Периоды кристаллических решеток рассчитывали методом наименьших квадратов, используя программу LATTIC с погрешностью не ниже 0,0004 нм для кубической фазы.

Кристаллооптические характеристики фаз определяли на поляризационном микроскопе МИН-8 с помощью высокопреломляющих иммерсионных жидкостей на основе йодистого метилена, трехбромистого мышьяка и сплавов серы и селена. Точность определения показателей преломления равна ± 0,02.

Микроструктуры изучали на шлифах отожженных образцов с использованием данных локального рентгеноспектрального анализа (ЛРСА), выполненного на установке SUPERPROBE-733 (JEOL, Japan, Palo Alto, CA) в обратно отраженных электронах (BEI) и во вторично отраженных электронах (SEI). Состав образцов контролировали с помощью спектрального и химического анализа выборочно.

Результаты и их обсуждение

Изучение твердофазного взаимодействия CeO_2 (тип флюорита, F) и Er_2O_3 (кубическая модификация оксидов редкоземельных элементов, C) при температуре 1100 °C в настоящей работе и при температуре 1500 °C в работе [12] показало, что в системе CeO_2 — Er_2O_3 образуются два типа твердых растворов кубической структуры: на основе флюорита F-CeO₂ и C- Er_2O_3 , которые разделены двухфазным полем (C+F) (рис. 1).

Исходный химический и фазовый состав образцов, обожженных при 1100 °C, параметры элементарных ячеек фаз, находящихся в равновесии при заданной температуре, приведены в таблице.

Границы областей гомогенности твердых растворов на основе F-CeO $_2$ и C-Er $_2O_3$ определены составами, содержащими

Рис. 1. Фазовые равновесия в системе CeO₂—Er₂O₃ при 1100—1500 °С (О — однофазные; **О** — двухфазные образцы)

20-25 мол. % Er_2O_3 и 85-95 мол. % Er_2O_3 при 1100 °С (таблица). Изменение периодов кристаллических решеток твердых растворов F-CeO₂ и C-Er₂O₃ в зависимости от концентрации Er_2O_3 представлено на рис. 2.

Из представленных на рис. 2 данных следует, что растворимость Er_2O_3 в F-модификации CeO₂ составляет 25 мол. % при 1100 °C. Параметр элементарной ячейки уменьшается от a = 0,5409 нм для чистого CeO₂ до a = 0,5376 нм (1100 °C) для предельного состава твердого раствора.

Рис. 2. Концентрационная зависимость параметров элементарных ячеек твердых растворов на основе F-CeO₂ (O) и C-Er₂O₃ (◊) в системе CeO₂—Er₂O₃ после обжига образцов при 1100 °C.

Таблица

Химический состав,		Фазовый состав*	Параметры элементарных	
мол. %			ячеек фаз, нм ($a \pm 0,0002$)	
CeO ₂	Er ₂ O ₃	Фазовый состав	<f></f>	<c></c>
			a	a
0	100	$<$ C- ${ m Er}_2{ m O}_3>$	_	1,0520
1	99	<C-Er ₂ O ₃ $>$	_	1,0531
2	98	$<$ C-Er $_2$ O $_3>$	—	1,0537
3	97	$<$ C-Er $_2$ O $_3>$	—	1,0538
4	96	$<$ C-Er $_2$ O $_3>$	—	1,0543
5	95	$<$ C-Er $_2$ O $_3>$	—	1,0543
10	90	<C-Er ₂ O ₃ $>$ **	—	1,0538
15	85	<c-er<sub>2O₃>+ <f-ceo<sub>2>сл.</f-ceo<sub></c-er<sub>	—	1,0537
20	80	<c-er<sub>2O₃>+<f-ceo<sub>2>сл. ↑</f-ceo<sub></c-er<sub>	—	1,0543
25	75	<c-er<sub>2O₃> + <f-ceo<sub>2> сл. ↑</f-ceo<sub></c-er<sub>	—	1,0543
30	70	<c-er<sub>2O₃> + <f-ceo<sub>2> сл. ↑</f-ceo<sub></c-er<sub>	_	1,0526
35	65	$<$ C-Er ₂ O ₃ $>$ och. + $<$ F-CeO ₂ $>$ \uparrow	0,5355	1,0539
40	60	<С-Еr ₂ O ₃ > осн. + <f-ceo<sub>2>↑</f-ceo<sub>	0,5380	1,0543
45	55	$<$ C-Er ₂ O ₃ $>$ och. + $<$ F-CeO ₂ $>$ \uparrow	0,5374	1,0539
50	50	$<$ C-Er ₂ O ₃ $>\downarrow$ + $<$ F-CeO ₂ $>\uparrow$	0,5371	1,0533
55	45	$<$ C-Er ₂ O ₃ $>\downarrow$ + $<$ F-CeO ₂ $>\uparrow$	0,5372	1,0515
60	40	$<\!\!\mathrm{F}\text{-}\mathrm{CeO}_2\!\!>\!\!\uparrow+<\!\!\mathrm{C}\text{-}\mathrm{Er}_2\mathrm{O}_3\!\!>\!\!\downarrow$	0,5374	1,0548
65	35	$<\!\!\mathrm{F}\text{-}\mathrm{CeO}_2\!\!>\!\!\uparrow+<\!\!\mathrm{C}\text{-}\mathrm{Er}_2\mathrm{O}_3\!\!>\!\downarrow$	0,5374	1,0539
70	30	$<$ F-CeO ₂ $>$ \uparrow + $<$ C-Er ₂ O ₃ $>$ \downarrow	0,5377	1,0539
75	25	<f-ceo<sub>2>осн. + <С-Ег₂О₃>сл.</f-ceo<sub>	0,5376	—
80	20	$<$ F-CeO $_2>$	0,5383	—
85	15	$<$ F-CeO $_2>$	0,5386	_
90	10	$<$ F-CeO $_2>$	0,5394	_
95	5	$<$ F-CeO $_2>$	—	—
100	0	$<$ F-CeO $_2>$	_	_

Исходный химический (мол. %) и фазовый составы образцов системы $CeO_2-Er_2O_3$ после обжига при 1100 °С (16 800 ч) по данным РФА и петрографии

*Обозначения фаз: <C> — твердые растворы на основе кубической модификации ${\rm Er_2O_3};$ <F> — твердые растворы на основе кубической модификации со структурой типа флюорита CeO₂. Другие условные обозначения: осн. — фаза, составляющая основу; сл. — следы фазы, \uparrow — содержание фазы увеличивается, \downarrow — количество фазы уменьшается.

^{**} При заданных условиях (T = 1100 °С, 16 800 ч, на воздухе) на дифрактограммах наблюдали одну фазу: кубическую (С) модификацию $\mathrm{Er_2O_3}$. На диаграмме состояния показан двухфазный состав по данным изменения периодов кристаллических решеток твердых растворов F-CeO₂ и C-Er₂O₃ в зависимости от концентрации $\mathrm{Er_2O_3}$.

Растворимость CeO₂ в кубической С-модификации оксида эрбия составляет ~ 5 мол. % CeO₂ при 1100 °C. Параметр элементарной ячейки увеличивается от a = 1,0531 нм для чистого Er₂O₃ до a = 1,0543 нм (1100 °C) для предельного состава твердого раствора.

Следует отметить, что при 1100 °С после выдержки 16 800 ч (на воздухе) на дифрактограммах по данным РФА так же, как по данным петрографии, в образце, содержащем 10 мол. % $CeO_2 - 90$ мол. % Er_2O_3 , наблюдали одну фазу: кубическую (С) модификацию Er_2O_3 . На диаграмме состояния (рис. 1) показан двухфазный состав и определены границы фазовых полей по данным изменения периодов кристаллических решеток твердых растворов F-CeO₂ и C-Er₂O₃ в зависимости от концентрации Er_2O_3 (рис. 2).

Рентгеновские и петрографические исследования подтверждены результатами электронной микроскопии.

На рис. З представлены типичные микроструктуры образцов системы CeO_2 — Er_2O_3 в зависимости от химического и фазового состава после обжига при 1100 °C.

На шлифах образцов после обжига при 1100 °С наблюдается неоднородная структура, формируются элементы структуры различных типов и размеров (рис. 3, a-u).

Рис. 3. Микроструктура образцов в системе CeO_2 — Er_2O_3 после обжига образцов при 1100 °C, BEI, × 2000:

ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2013, № 113 161

Микроструктура кубической модификации C-Er₂O₃ и твердых растворов на ее основе проявляется в виде различно ориентированных текстурированных пластинчатых кристаллов анизометричной формы размером 0,83-4,17 мкм (рис. 3, *a*). Характерно, что для твердых растворов <C-Er₂O₃> с ростом концентрации оксида церия размер зерен уменьшается (от 1,67 до 0,04 мкм, рис. 3, *б*), однако микроструктура двухфазных образцов с увеличением содержания CeO₂ имеет более крупнозернистое строение (от 0,25-10 до 1,25-47,5 мкм, рис. 3, *в*).

Характерные для двухфазной области (C+F) микроструктуры представлены на рис. 3, в-з. Они отличаются различной пористостью. Образуются монолитные и пористые элементы структуры (рис. 3, в, г). В образце, содержащем 35 мол. % СеО₂ — 65 мол. % Ег₂О₃, происходит взаимодействие с образованием структуры пластинчатых элементов правильной огранки в виде призм (рис. 3, *в*). Для двухфазного образца, содержащего 50 мол. % $CeO_2 - 50$ мол. % Er_2O_3 , характерно наличие мелкозернистой матрицы, в которой вкраплены элементы структуры анизометричной формы длиной от 5 до 50 мкм (рис. 3, г). Аномальный рост структурных составляющих наблюдается при формировании твердых растворов. Негомогенность структуры проявляется в том, что имеются элементы структур различных размеров, в свою очередь, крупные элементы структуры отличаются пористостью. Отмечено, что с дальнейшим увеличением содержания оксида церия, в составе 55 мол. % СеО₂ — 45 мол. % Er₂O₃ структура разрыхляется. Идет твердофазная реакция распада. В процессе спекания состава 75 мол. % $CeO_2 - 25$ мол. % Er_2O_3 происходит самоармирование (рис. 3, 3).

Микроструктура однофазного образца (<F-CeO₂>), содержащего 85 мол. % CeO₂ — 15 мол. % Er_2O_3 , проявляется в виде мелких округлых зерен размером 0,08—0,8 мкм, в наличии сообщенные и изолированные поры (рис. 3, u).

Заключение

Изучено взаимодействие фаз и структурные превращения в системе CeO_2 — Er_2O_3 при 1100 °C во всем интервале концентраций. Характерным для указанной системы является наличие ограниченных твердых растворов на основе кубических модификаций C- Er_2O_3 и F-CeO₂. Определены параметры элементарных ячеек фаз, находящихся в равновесии при заданной температуре. Результаты исследований могут быть использованы для оптимизации выбора составов при разработке нового класса композиционных материалов с повышенными характеристиками.

Библиографический список

 $\label{eq:linear} \begin{array}{l} \mbox{1. Ceria-based materials for solid oxide fuel cells / V. V. Kharton, F. M. Figueiredo, L. Navarro [etc.] // J. Mater. Sci. <math display="inline">-$ 2001. - Vol. 36. - P. 1105–1117.

2. Sato K. Effect of rare-earth oxides on fracture properties of ceria ceramics / K. Sato, H. Yugami, T. Hashida // J. Mater. Sci. — 2004. — Vol. 39. — P. 5765—5770.

3. Study on analysis crystal structure in CeO₂ doped with Er_2O_3 or Gd_2O_3 / Zhu Baolin, Tahara Yuki, Yasunaga Kazufumi [etc.] // J. of Rare Earths. — 2010. — Vol. 28. — P. 164—167.

4. Kimpton J. Investigation of electrical conductivity as f function of dopantion radius in the systems $Zr_{0.75}Ce_{0.08}M_{0.17}O_{1.92}$ (M = Nd, Sm,Gd, Dy, Ho, Y, Er, Yb, Sc) / J. Kimpton, T. H. Randle, J. Drennan // Solid State Ionics. — 2002. — Vol. 149. — P. 89—98.

5. Anjana Prabhakaran Sreekumari. Microwave dielectric properties of (1-X) CeO_{2-x}·RE₂O₃ (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, and Y) ($0 \le x \le 1$) ceramics / Anjana Prabhakaran Sreekumari, Joseph Tony, Mailadil Tomas Sebastian. // Journal of Alloys and Compounds. — 2010. — Vol. 490. — P. 208—213.

6. Effects of swift heavy ion irradiation on the structure of $\rm Er_2O_3$ -doped $\rm CeO_2$ / B. Zhu, H. Ohno, S. Kosugi [etc.] // Nuclear Instruments and Methods in Physics Research. - 2010. –Vol. 268, B. – P. 3199–3202.

7. Synthesis and optical investigation of systems involving mixed Ce and Er oxides / Pedrosa A. M. Garrido, da Silva J. E. C., Pimentel P. M. [etc.] // Journal of Alloys and Compounds. -2004. -Vol. 374. -P. 223-225.

8. Influence of erbia or europia doping on crystal structure and microstructure of ceria-zirconia (CZ) solid solutions / [Maschio Stefano, Aneggi Eleonora, Trovarelli Alessandro, Sergo Valter] // Ceram. Int. — 2008. — Vol. 34. — P. 1327—1333.

9. Photoluminescence of Er-containing metal oxide in U-band / Ito Takaaki, Yoshino Masahito, Iwasaki Kouta [etc.] // Proceedings of International Symposium on Eco Topia Science. — 2007. — ISETS07. — P. 128—130.

10. Phase Relation Studies in the CeO_2 —La₂O₃ System at 1100—1500 °C / [Andrievskaya E. R., Kornienko O. A., Sameljuk A. V., Ali Sayir] // J. Eur. Ceram. Soc. — 2011. — Vol. 31, \mathbb{N} 7. — P. 1277—1283.

11. Фазовые соотношения в системе CeO₂—Sm₂O₃ при температуре 1500 °C / Е. Р. Андриевская, О. А. Корниенко, В. С. Городов [идр.] // Современные проблемы физического материаловедения. — К. : ИПМ НАН Украины, 2008. — № 17. — С. 25—29.

12. Взаимодействие оксидов церия и эрбия при температуре 1500 °С / [Андриевская Е. Р., Гусаров В. В., Корниенко О. А., Самелюк А. В.] // Зб. наук. пр. ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО». — Х. : ПАТ «УКРНДІВ ІМ. А. С. БЕРЕЖНОГО», 2012. — № 112. — С. 133—140.

Рецензент к. т. н. Шулик И. Г.

ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2013, № 113 163